首页全站导航手机版加入收藏关注我们
全站导航
  • 手游行业
  • 游戏问答
  • 新游前瞻
  • 游戏动态
  • 视频攻略
  • 新游预告
  • 热游视频
  • 周边视频
  • 资讯中心
  • 游戏攻略
  • 礼包中心
  • 热门攻略
  • 游戏专区
  • 手游合集
  • 手游分类
  • 手游开服
  • 手游开测
  • 全部手游
  • 苹果排行
  • 安卓排行
  • 单机排行
  • 网游排行
  • 福利美图
  • 吐槽八卦
  • 内涵GIF
  • 游戏截图
  • 游戏壁纸
关注我们
手游巴士

资讯

  • 资讯
  • 游戏
  • 视频
  • 礼包
  • 图片
  • 首页
  • 游戏中心
  • 手游行业
  • 新游资讯
  • 新游预告
  • 游戏活动
  • 综合资讯
  • 硬件资讯
  • 游戏攻略
  • 游戏评测
当前位置:首页 > 手游资讯 > 手游行业 > 神奇虫洞,不止科幻

神奇虫洞,不止科幻

2022-11-14 13:35 来源:it之家 作者:佚名

用手机看

扫描二维码随身看资讯 使用手机 二维码应用 扫描右侧二维码,您可以
1.在手机上细细品读~
2.分享给你的微信好友或朋友圈~

本文来自微信公众号:返朴 (ID:fanpu2019),作者:安宇森

许多人都应该听说过“虫洞”,无论是从科幻角度可穿越时空的遐想,亦或是从理论物理学前沿的学术新闻里感到不明觉厉,可虫洞究竟是什么?它如何成为连接时空的结构,只是物理学家的玩具吗?事实上,近年来在量子引力的研究中,虫洞潜藏着我们仍未发现的深意。

虫洞(wormhole)是一种神奇的时空结构,同时物理学的研究也愈加证明,虫洞是连接量子理论和引力理论的钥匙。本文拟从洛伦兹(包含时间和空间)虫洞和欧几里得虫洞两个方面,来介绍虫洞这一基本概念,及其在理论物理学中的作用。

洛伦兹虫洞

首先,我们介绍洛伦兹虫洞。洛伦兹虫洞是时空中可能存在的虫洞结构,它是真实存在的物理客体。

关于⾍洞最早的研究启发⾃卡尔・萨根的⼩说《接触》(Contact),这本⼩说也被成功的影视化了,由罗伯特・泽⽶吉斯指导的同名影⽚《超时空接触》(Contact)⼴受好评。在最初⼩说的原稿中,作者利⽤⿊洞来实现时空隧道。但是其好友 Kip Thorne 却表⽰担忧,作为研究⼴义相对论的⼤家,他很清楚⿊洞是很难作为时空隧道这种结构的。但是这激发了 Kip Thorne 的研究兴趣,从⽽后来开展了最初关于⾍洞的⼀系列研究。

虫洞和能量条件

时空穿越是科幻爱好者⼀个永恒的兴趣,⽽可穿越的⾍洞似乎是实现它的⼀个很好的路径。因此⾍洞研究的⼀个重要的⽅⾯,即研究它的可穿越性。通常的⼴义相对论研究中,都是知道⼀个物质分布,然后研究这个物质分布会给出的时空形状;然⽽虫洞研究中,物理学家的⽬的是实现特定的时空形状 —— 因此 Morris 和 Thorne 考虑反其道⽽⾏之,先给出关于时空结构的限制,然后再通过爱因斯坦场⽅程进⾏物质分布的求解。

最初的计算是在球对称坐标系下进⾏的,他们发现如果要想满⾜特定的⾍洞时空结构,那么所需要的物质分布⼀定是违反能量条件的,通俗地来讲,需要引⼊奇异的负能物质 [1]。这件事情可以通过测地线汇的办法很⾃然地看出来。⼀般在⼴义相对论中,为了探究时空的⼀些性质,通过测地线汇的变化可以在不解爱因斯坦⽅程的情况下,就能够得出⼀些结论。例如这⾥,如果需要⼀个⾍洞结构连接两个不同的时空区域并可实现穿越,那么通过它的光线需要先汇聚到⾍洞的喉部(即虫洞结构中的最窄处),再从喉部发出。广义相对论中,光线的汇聚还是发散,可以通过类光测地线汇的膨胀给出,描述它的方程通常叫作 Ray-Chaudhuri ⽅程,方程如下:

我们可以选择,满⾜旋转和剪切都为 0 的线汇,σ=ω=0,这样根据通过⾍洞的线汇的特征,可知在⾍洞的喉部⼀定存在 dθ/dλ=0 的位置,这暗⽰了如下的⽅程

再根据⼴义相对论可知

这便破坏了类光能量条件,因此⾍洞的存在⼀定需要在它的喉部引⼊负能量的奇异物质。

这种奇异物质的引⼊让⾍洞的构造变得⾮常困难,这种违反类光能量条件的物质⼀般只有量⼦理论中才会允许,且通常⼗分微⼩。同时如果满足⾍洞可以通过,我们还需要考虑⾍洞作用于⼈体所产生的潮汐⼒效应,在⼈体可以忍受的潮汐⼒的条件之下,理论预⾔⾍洞将会⾮常巨⼤,⽽这么巨⼤的空间都存在奇异物质将其⽀撑,显得更为困难。不过,或许正如科幻⼩说《三体》幻想的那样,⽆限发达的⽂明可以在物理定律允许的条件下,不受技术壁垒的限制做到任何事情 —— 建造⾍洞这种事情仍然可以畅想。

虫洞与时间机器

既然⾍洞可以看作宇宙中连接遥远两点之间的近路,那么或许⾍洞可以被改造为时间机器。[2] 在时间机器的讨论中,我们忽略⼀些细节,只把⾍洞看成是连接时空中(t, 0) 和(t, L)两点之间的机器,⾍洞的入口对应 (t,0),⽽出口对应 (t,L)。如果我们让出口相对于入口进⾏⾼速运动,那么根据狭义相对论的钟慢效应(如双⽣⼦佯谬),出口和⼊口之间就会形成⼀个时间差 T;然后我们缩短空间距离 L 为 0,让出口和⼊口回归⼀点,那么从⼊口到出口,时间就会发⽣⼀个 T 的跃变,⽽这就完成了穿越到过去或者未来的操作。这便是通过⾍洞构建时间机器的⼀个最简化的版本。

时间机器或许相⽐于⾍洞,更能激发⼈们的兴趣,因为⼈⽣总是充满着各种各样的遗憾。当⼈⽣⾏⾄暮年,也有各种各样的悔恨,时间机器或许就可以给⼈⼀次重新来过的机会,来弥补这些遗憾。因此⽆数凄美动⼈的爱情故事,都可以在此背景下铺展开来。

然⽽时间机器的出现会引发很多因果性上的难题,因此在⼤多数时候,时间机器只被看作是玩闹,⽽⾮正经的科学研究课题。或许“⾃然憎恶时间机器”,⽽物理学家们需要做的就是找到相应的物理原理,来证明时间机器不可能被制成。

虫洞与量子纠缠

1997 年,Maldacena 带着他的 AdS / CFT 原始论⽂,给理论物理学界炸响了⼀颗惊雷,从此越来越多的学者开始研究引⼒的全息性质。[3] 后来,基于 Maldacena 2001 年的论⽂结论 [4],Raamsdonk ⾸先通过简单的论证发现,⾍洞和量⼦纠缠具有本质联系,即 ER=EPR 猜想。[5](ER=EPR 这个名号,是 2013 年经 Susskind 和 Maldacena 的⼯作正式提出,⽬的是解决⿊洞的⽕墙问题 [6]。) ER 指代爱因斯坦-罗森桥,它是连接两个⿊洞之间的区域,可以看作是⾍洞研究的前⾝。不过它是不可穿越的,任何穿越爱因斯坦-罗森桥的举动,都不可避免的落⼊⿊洞奇点。EPR 指代的则是量⼦纠缠。

爱因斯坦-罗森桥丨图⽚来源:arXiv: 2110.14958

下⾯我们简单介绍这⼀观点,2001 年,Maldacena 的研究⼯作发现,量⼦场论中的热场⼆重态 TFD

对应于⼀个相应的 AdS 史⽡西⾍洞,它的彭罗斯图和史⽡西⿊洞的最⼤解析沿拓的彭罗斯图一致。当然,如果盯着彭罗斯图的某个空间截⾯来看,它可以理解为两个通过中间的⾍洞结构连接的⿊洞。

热场⼆重态和史⽡西⿊洞的对应丨图⽚来源:arXiv: 1005.3035

⼈们发现,这个热场⼆重态是⼀个纠缠态,⽽调节温度(也就是这⾥的 β) ,就对应于调节了左右两边的纠缠。当温度很低时,上⾯的纠缠态会变成没有纠缠的直积态;当温度很⾼时,它会成为最⼤纠缠态。研究发现,随着温度从高到低的变化,虫洞结构中间的喉会逐渐变窄直⾄断开。因此我们发现从边界理论的视⾓来看减⼩纠缠的这个操作,对应于减⼩两个⿊洞之间连接⾍洞的⼤⼩。因此这暗⽰了量⼦纠缠和⾍洞具有深刻的联系,甚⾄于说它们本质上即是⼀回事。

⾍洞的形状随着温度的降低逐渐变窄丨图⽚来源:arXiv: 1005.3035

ER=EPR 猜想暗⽰了时空本源可能来⾃量⼦纠缠。通常描述量⼦纠缠的度量是纠缠熵,但是 ER bridge 的增长时间却会⼤⼤的超越热平衡时间(⽽热平衡之后纠缠熵会趋于定值),因此熵的概念似乎很难描述 ER bridge 的体积的变化。据此物理学家提出⼀种可能具有和熵不同性质的物理量与⾍洞体积产⽣关联,即计算复杂度。它的物理含义是指定⼀系列操作门,从⼀个初态制备到末态所需要⽤到的最⼩操作门的数⽬。

同时,有趣的是,虽然前⽂提到的爱因斯坦-罗森桥不可穿越,但是我们可以构造相应的模型来实现这⼀可穿越⾍洞,即在边界引⼊⼀个叫作 double trace deformation 的操作,引⼊如下的算符扰动

。这个操作相当于给背景时空引⼊了⼀条负能量的能流,它的能量在⿊洞视界附近因为引⼒蓝移会变得⾮常⼤,因此会对于背景造成很⼤的反作⽤,从⽽影响视界的位置,使得⿊洞的视界向内收缩。因此从⼀个边界发出的,原本落⼊奇点的光⼦会跑到视界外边,重新到达另⼀个边界。即实现了⾍洞的可穿越性。

根据 ER=EPR 的思想,这个过程相当于引⼒版本的量⼦隐形传态,⽽ double trace deformation 则类似经典信道。在量⼦隐形传态中,似乎量⼦⽐特是通过量⼦纠缠在另⼀个地⽅被重新构造出来的;⽽在引⼒的图像下,它有了⼀个全新的理解,那就是它是通过连接两个地⽅的⾍洞穿越⽽来的 [7]。

可穿越⾍洞的物理图像丨图⽚来源:arXiv: 1704.05333

欧几里得虫洞

以上介绍了时空中的⾍洞作为⼀个可能物理客体所需要具备的条件及其相应的物理。然⽽,在近⼏年的量⼦引⼒研究中,⼀种新的⾍洞结构激发了⼈们更多的兴趣,即欧几里得虫洞。

介绍什么是欧几里得虫洞之前,我们先介绍理论物理研究中,经常进行的欧式化的操作。通过分析量子场论中的路径积分和统计物理中的配分函数的相似性,我们发现如果对时间进行如下 wick 转动的操作 t=iτ,(关于 wick 转动参见《温度与神秘的虚时间 | 众妙之门》)即将时间坐标虚数化,我们可以将量子场论的问题和统计物理的问题等价起来,由此得到的即欧式路径积分。在欧式路径积分中,并没有时间方向,可以看作是某个时间面上的物理。(当然我们也可以将欧式路径积分和洛伦兹路径积分结合起来。)

欧式路径积分是研究众多理论物理问题的一个极为有效的工具。后面我们将介绍,在用欧式路径积分具体的计算黑洞霍金辐射的精细熵的时候,会出现之前所没有发现的虫洞结构。这种⾍洞结构,可以有助于我们理解众多困难问题,如⿊洞的信息丢失问题。

拷贝虫洞与信息丢失

⿊洞信息问题,是量⼦⼒学和⼴义相对论在⿊洞这个时空下的最深刻的⽭盾。考虑纯态物质塌缩为⿊洞继⽽辐射,我们可以看到⼀个从纯态到混合态的⾮⼳正演化,但是它是不被量⼦⼒学所允许的。⿊洞信息问题,作为⼀个会下⾦蛋的母鸡,激发了物理学家们源源不断的创造⼒。

最近基于全息纠缠熵的启发,⼈们发现了⼀种在引⼒中计算霍⾦辐射精确熵的办法,被称作岛屿公式。(参见《黑洞信息悖论之谜,霍金最后的问题被解决了吗?》)这种计算得到的精确熵,⼗分神奇的满⾜ Page 曲线,进⽽满⾜量⼦⼒学的⼳正性。我们知道,全息纠缠熵的 RT 公式,开始虽然是作为⼀个半猜想式的⼯作,但是后来得到了引⼒路径积分的精确证明。⽽这⾥得到的岛屿公式,是否可以通过引⼒路径积分来证明?如果可以的话,那么它应该来⾃于引⼒路径积分中哪些部分的贡献呢?

⾸先我们介绍如何在场论中计算纠缠熵,它可以通过⼀种叫作拷贝技术(replica trick)的办法计算,即将研究的系统拷贝 n 份,进⾏计算,最后再进⾏解析延拓的办法。公式如下:

上文第一个等号是纠缠熵的定义,第二个等号则是应用洛必达法则得出的,这一步操作通常叫作拷贝技术(replica trick)。因为路径积分物理含义描述的是,从初态到末态的概率幅

,所以欧式路径积分可以⽤来定义波函数,进⽽定义密度矩阵。在这个欧式路径积分的表述下,上⾯纠缠熵的计算可以转化为在拷贝流形上的配分函数的计算,即上⽂的最后⼀步等式。

依据上面的思路,如果我们将霍⾦辐射的密度矩阵通过欧式路径积分进⾏⼀个图形表⽰的话,精确地计算它的熵(即配分函数)需要考虑所有可能的拷贝流形构型。考虑辐射和⿊洞整体组成⼀个纯态,因计算的是霍⾦辐射的熵,需要将⿊洞部分求迹。

熵的计算只是要求辐射密度矩阵作为边界⾸尾顺次连接形成⼀个 replica 的结构,但其几何内部其实⽆法进⾏限制,因此计算 Zn 时需要考虑所有可能的内部构型,包括⼀些连通的构型。

⼀个简单的⽰意图:左侧来⾃辐射密度矩阵形成的边界条件(实线代表做了求迹之后的⿊洞边界,虚线代表辐射),右侧代表计算所需要的引⼒构型。第⼀个图是⾮连通的构型,第⼆个图代表连通的拷贝⾍洞构型。图⽚来:arXiv: 1911.11977

当不考虑连通构型之时,可以得到和霍⾦最初的计算相符的熵,此时违反⼳正性;⽽考虑这个连通的构型(通常叫作拷贝⾍洞),则会得到和⼳正性预期相符的熵的⾏为。(考虑全连通构型就可以得到岛屿公式在晚期的结果,然⽽真实的拷贝⾍洞的贡献会更丰富。)这个连通构型它的含义和⾍洞很像,都是通过⼀个连通结构来连接不同的引⼒区域(只不过这⾥的不同区域是对⼀个体系做 replica trick 得到的),但是它和洛伦兹型的⾍洞对应的物理却⼤不相同,⽽它具体的物理含义仍然有待更多的理解和澄清。

拷贝⾍洞的特点,从图中我们可以看到每⼀个边界⾯上的⿊洞连接在了⼀起。图⽚来源:arXiv: 1911.12333

拷贝⾍洞的计算是复杂的,其中只有最简单的模型可以考虑 Replica ⾍洞的所有可能构型,并将其解析的求和起来得到最为精确的辐射精确熵 [8]。然⽽物理学家已经可以(⾄少在 2 维下)通过拷贝⾍洞的⽅式,证明先前得到的岛屿公式的正确性。拷贝⾍洞的出现给⿊洞信息问题的研究注⼊了新的⽣机活⼒,很多问题都得以被重新讨论研究,例如引⼒系综对应问题 [9],量⼦引⼒中的整体对称性问题,以及⿊洞辐射过后的剩余(remnant)[10] 等。

也许真正有趣的事情才刚刚开始,期待未来⾍洞的研究会带给我们更多的惊喜。

参考文献

  • [1] M.S. Morris and K.S. Thorne, Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity, Am. J. Phys. 56 (1988) 395.

  • [2] M.S. Morris, K.S. Thorne and U. Yurtsever, Wormholes, Time Machines, and the Weak Energy Condition, Phys. Rev. Lett. 61 (1988) 1446.

  • [3] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231[hep-th/9711200].

  • [4] J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04(2003) 021 [hep-th/0106112].

  • [5] M.V.Raamsdonk, Building up spacetime with quantum entanglement, Gen.Rel.Grav(2010) 2323-2329

  • [6]J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [1306.0533].

  • [7] P. Gao, D.L. Jafferis and A.C. Wall, Traversable Wormholes via a Double Trace Deformation, JHEP 12 (2017) 151 [1608.05687].

  • [8] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and Tajdini, Replica Wormholes and the Entropy of Hawking Radiation, JHEP 05 (2020) 013 [1911.12333].

  • [9] G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, 1911.11977.

  • [10]P.S Hsin, L.V.Illiesiu, Z.Yang,Violation of global symmetries from replica wormholes and the fate of black hole remanants. Class.Quant.Grav.38(2021)19,194004.

以上就是手游巴士为您提供《神奇虫洞,不止科幻》的详细内容,更多精彩内容请继续阅读上一篇《三峡能源:深入推动抽水蓄能、新型储能、氢能等业务发展》

表羞涩嘛~喜欢就点我

分享吧~提高逼格:

相关阅读

  • 2022-11-14 微信 iOS 8.0.30 最新官方正式版下载发布:最低兼容版本升至苹果 iOS 13

  • 2022-11-14 富士相机高性价比镜头,适马 X 卡口 18-50mm F2.8 DC DN 发布

  • 2022-11-14 消息称《巫师 3》次世代版将在 TGA 现场公布,当天发售免费升级

  • 2022-11-14 光刻机巨头 ASML 扩产 EUV 与 DUV 设备

  • 2022-11-14 热门大作《艾尔登法环》全球销量突破 1750 万份

  • 2022-11-14 NASA 微型 CAPSTONE 探测器现已抵达月球轨道

  • 2022-11-14 比亚迪旗下腾势 D9 加速开启交付,SUV 概念车亮相天津车展

  • 2022-11-14 三峡能源:深入推动抽水蓄能、新型储能、氢能等业务发展

  • 2022-11-14 神奇虫洞,不止科幻

  • 2022-11-14 三星 Exynos 1330/1380 处理器曝光,Galaxy A54 等新机将搭载

  • 2022-11-14 特斯拉将为电动卡车 Semi 举行交付仪式,随机抽取部分幸运散户参加

  • 2022-11-14 北汽新能源“考拉”通过微博官方认证,更注重女性用户

  • 2022-11-14 矿物颜料那些事 —— 只此青绿(石绿)

  • 2022-11-14 《霍格沃兹:遗产》46 分钟实机演示公开,将于 2023 年 2 月 10 日发售

  • 2022-11-14 王者荣耀衍生游戏何以度过七年之痒

  • 2022-11-14 使命完成!天舟四号货运飞船将于 11 月 15 日受控再入大气层

  • 2022-11-14 开放高速路测,《深圳市智能网联汽车道路测试与示范应用管理实施细则》印发

  • 2022-11-14 全球规模最大,太阳射电成像望远镜设备主体在四川完工

  • 2022-11-14 岚图汽车将举行岚图科技日,展示“ESSA+SOA 智能电动仿生体”

  • 2022-11-14 Apple TV 4K 性能实测:CPU 性能提升 40%,单核优于 Xbox One / PS4

  • 2022-11-14 FTX“戏剧性”走向崩盘,听“加密货币之王”讲述他五年内成为亿万富翁的故事

  • 2022-11-14 机构:三季度传音在中拉美和中东欧地区智能手机市场跻身前五

  • 2022-11-14 奥迪 RS e-tron GT 将于 11 月 15 日开启预售,零百加速 3.3 秒

  • 2022-11-14 自家帮衬:SpaceX 向推特购买 250 万美元广告服务

  • 2022-11-14 vivo X90 系列开启预约:首发天玑 9200,11 月 22 日发布

热点推荐

  • 大话2《宫里的大话》第二话 揭秘国风赋新计划背后的故事大话2《宫里的大话》第二话 揭秘国风赋新计划背后的故事
  • 爱游戏2017Chinajoy大玩情怀  “游戏不灭 天生爱玩”!爱游戏2017Chinajoy大玩情怀 “游戏不灭 天生爱玩”!
  • 映客入局王者荣耀职业联赛,投资过亿开启“一键即播”映客入局王者荣耀职业联赛,投资过亿开启“一键即播”
  • 太极熊猫3:猎龙与好莱坞大片金刚:骷髅岛建立影游合作太极熊猫3:猎龙与好莱坞大片金刚:骷髅岛建立影游合作

热门游戏

  • 时逆

    时逆

    立即下载
  • 剑侠世界

    剑侠世界

    立即下载
  • 铁甲风暴

    铁甲风暴

    立即下载
  • 三国志奇侠传

    三国志奇侠传

    立即下载
  • 蜀山战神

    蜀山战神

    立即下载
  • 人气动漫大乱斗

    人气动漫大乱斗

    立即下载

热点资讯

更多+
  • 啪啪三国2手游枪兵好玩吗?枪兵作战有什么特色
    啪啪三国2手游枪兵好玩吗?枪兵作战有什么特色
  • 轩辕剑之汉之云手游双属性职业阴阳战斗玩法
    轩辕剑之汉之云手游双属性职业阴阳战斗玩法
  • 莽荒纪3D手游新手必备 浩瀚世界里的修仙小伙伴上
    莽荒纪3D手游新手必备 浩瀚世界里的修仙小伙伴上

小编热推

更多+
《倩女手游》蹴鞠大赛 清商曲、设佳宴,魅香楼玩法新升级!

满分攻略

  • 羊了个羊第二关怎么过11.14 羊了个羊第二关11.14攻略

    满分 羊了个羊第二关怎么过11.14 羊了个羊第二关11.14攻略

    02关
    查看全部
  • 过河大师智力闯关第10关怎么过-纱窗擦屁股

    满分 过河大师智力闯关第10关怎么过-纱窗擦屁股

    10关
    查看全部
  • 原神智巧灵蕈大竞逐第五天攻略 协同攻势要地防御第五天通关流程

    满分 原神智巧灵蕈大竞逐第五天攻略 协同攻势要地防御第五天通关流程

    10关
    查看全部

热门礼包

更多+

三国杀

三国杀 剩余:500/500 有效日期:2017-05-02

领取

三国杀

领取

三国杀愚人节礼包

三国杀愚人节礼包 剩余:500/500 有效日期:2017-05-31

领取

三国杀愚人节礼包

领取

三国杀独家礼包

三国杀独家礼包 剩余:500/500 有效日期:2017-07-26

领取

三国杀独家礼包

领取

三国杀移动版国庆礼包

三国杀移动版国庆礼包 剩余:500/500 有效日期:2017-11-29

领取

三国杀移动版国庆礼包

领取

一步高升新手礼包

一步高升新手礼包 剩余:491/1000 有效日期:2019-09-14

领取

一步高升新手礼包

领取

奶块首发大礼包

奶块首发大礼包 剩余:344/1900 有效日期:1970-01-01

领取

奶块首发大礼包

领取

奶块成长礼包

奶块成长礼包 剩余:297/1167 有效日期:2017-12-31

领取

奶块成长礼包

领取

植物大战僵尸2特权礼包

植物大战僵尸2特权礼包 剩余:232/300 有效日期:2018-05-31

领取

植物大战僵尸2特权礼包

领取

银河战舰代言人公测礼包

银河战舰代言人公测礼包 剩余:232/300 有效日期:2018-10-01

领取

银河战舰代言人公测礼包

领取

植物大战僵尸2豪华福包

植物大战僵尸2豪华福包 剩余:224/500 有效日期:2018-07-31

领取

植物大战僵尸2豪华福包

领取

热门合集

更多+
  • 适合女生玩的HTML5游戏

    查看合集
  • 2017手机游戏排行榜

    查看合集

手游资讯

NEWS
手游行业 手游活动 新游前瞻 综合资讯

最全攻略

RAIDERS
游戏资料 游戏攻略 硬件资讯 游戏问答

视频中心

VIDEO
视频攻略 新游预告 热门游戏 周边视频

游戏中心

GAME
手游合集 游戏分类 发号中心 热门专区

手游排行

TOP 100
安卓榜 苹果榜 单机榜 网游榜

手游巴士

手游巴士

  • 关于我们
  • 商务洽谈
  • 联系我们
  • 友情链接
  • 版权声明

Copyright © 2020-2022 手游巴士 shouyoubus.com, All Rights Reserved.赣ICP备2021011040号